Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner.

Microbiome. 2018;6(1):109
Full text from:

Plain language summary

The mechanism by which the maternal diet may influence the gut microbiota of an infant remains unknown. This study aimed to examine the association of maternal diet during pregnancy and mode of delivery on the gut microbiome 6 weeks post-delivery. 976 subjects were enrolled aged of 18 and 45 years old, between 24 and 28 weeks of gestation and their maternal diet during pregnancy was assessed with a validated food frequency questionnaire. Effects of maternal dairy intake on infant gut microbiota showed decreased colonization of milk-digesting bacteria in infants delivered by caesarean section, when compared to those who were born vaginally. The authors concluded that future studies examining the relationship between maternal diet and components of breast milk including microbial and nutritional profiles, may help to offer insight into the mechanism by which maternal diet influences the gut microbiome of an infant.

Abstract

BACKGROUND The gut microbiome has an important role in infant health and immune development and may be affected by early-life exposures. Maternal diet may influence the infant gut microbiome through vertical transfer of maternal microbes to infants during vaginal delivery and breastfeeding. We aimed to examine the association of maternal diet during pregnancy with the infant gut microbiome 6 weeks post-delivery in mother-infant dyads enrolled in the New Hampshire Birth Cohort Study. Infant stool samples were collected from 145 infants, and maternal prenatal diet was assessed using a food frequency questionnaire. We used targeted sequencing of the 16S rRNA V4-V5 hypervariable region to characterize infant gut microbiota. To account for differences in baseline and trajectories of infant gut microbial profiles, we stratified analyses by delivery mode. RESULTS We identified three infant gut microbiome clusters, characterized by increased abundance of Bifidobacterium, Streptococcus and Clostridium, and Bacteroides, respectively, overall and in the vaginally delivered infant stratum. In the analyses stratified to infants born vaginally and adjusted for other potential confounders, maternal fruit intake was associated with infant gut microbial community structure (PERMANOVA, p < 0.05). In multinomial logistic regression analyses, increased fruit intake was associated with an increased odds of belonging to the high Streptococcus/Clostridium group among infants born vaginally (OR (95% CI) = 2.73 (1.36, 5.46)). In infants delivered by Cesarean section, we identified three clusters that differed slightly from vaginally delivered infants, which were characterized by a high abundance of Bifidobacterium, high Clostridium and low Streptococcus and Ruminococcus genera, and high abundance of the family Enterobacteriaceae. Maternal dairy intake was associated with an increased odds of infants belonging to the high Clostridium cluster in infants born by Cesarean section (OR (95% CI) = 2.36 (1.05, 5.30)). Linear models suggested additional associations between maternal diet and infant intestinal microbes in both delivery mode strata. CONCLUSIONS Our data indicate that maternal diet influences the infant gut microbiome and that these effects differ by delivery mode.

Lifestyle medicine

Patient Centred Factors : Triggers/maternal diet
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Stool

Methodological quality

Allocation concealment : Not applicable

Metadata